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Resumo

O escopo deste projeto abrange o estudo da esteira de um cilindro esbelto. A emisséo de
vortices alternados na esteira é responsavel por forgas ciclicas em cilindros. “Risers”,
que sdo corpos flexiveis e cilindricos ficam sujeitos a fadiga quando submetidos a essas
forgas. O objetivo deste projeto ¢ modelar a emissdo de vortices na esteira pela
discretizagdo da equagdo de Ginzburg-Landau. Para isso foram elaborados métodos
numéricos de diferencas finitas do tipo explicito e semi-implicito, sendo que apenas o
semi-implicito rendeu bons resultados. Este método foi restrito a 100<Re<300, para que
os resultados fossem comparados com os de publicacdes. Esses resultados foram
satisfatdrios qualitativamente e quantitativamente. Desta forma foi validado o método

numeérico construido.



Abstract

The issue of this work encloses the study of a slender cylinder wake. The production of
oscillating vortex on the wake gives rise to cyclical transverse forces on the cylinder.
“Risers”, which are flexible and cylindrical bodies, when submitted to those forces, can
fail due to fatigue. The goal of this work is to model the produce of vortex by the
discretization of the Ginzburg Landau equation. For this, it was done numerical methods
of finite differences of the explicit and semi-implicit kinds, of which only the semi-
implicit yielded good results. This method was limited to 100<Re<300 interval in order
to compare the publications results. The results were good qualitatively and

quantitatively. Thus, it was achieved the validation of the numerical built method.
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1. Introducio

Problemas com “risers”, usados em plataformas de prospecgdo de petréleo em alto-mar,
tém, ultimamente, se tomado preocupantes. Tém sido feitas baixas estimativas da “vida
util” quanto & fadiga do material do “riser”, ja que este fica submetido a excitagdes
periddicas quando sujeito 4s correntes maritimas.

“Risers” sdo dutos cilindricos, que unem os pogos localizados no fundo do mar com os
sistemas flutuantes. Possuem grande flexibilidade, pois tem comprimento da ordem de

1000m e siio feitos de aco APL Sdo, em geral, lancados em configuragio catenaria.

Figura 1 - Diagrama de um sistema flutuante ancorado mostrando varios pogos de
prospeccao.

O fendmeno observado, que é a causa das excitagdes periddicas no “riser”, é ©
desprendimento espontineo de vértices em sua esteira. Eles sdo emitidos de suas faces,

superior e inferior, de forma alternada e com freqiiéncia caracteristica, induzindo




vibragbes na direciio perpendicular & diregiio do escoamento das correntes maritimas.
Essas vibragBes sio denominadas “vibracdes induzidas por vértices” (VIV).
A emissio de vértices ocorre na esteira de qualquer corpo rombudo, porém possuem

caracteristicas periddicas apenas os emitidos por corpos de segdio transversal circular.
1.1. Analise preliminar quante 4 fadiga de “risers”

Considere-se um fluido escoando com velocidade U na diregdo horizontal e
incidindo sobre uma estrutura cilindrica elastica (um “riser”), com didmetro
caracteristico D.

Seja o, =U/D a frequéncia dos vortices emitidos do cilindro, denominada

“freqiiéncia de Strouhal”.

Suponha-se que a estrutura cilindrica tenha freqiiéncias naturais @, ; nesta situagao
observa-se que, quando @, =@, , surge o fendmeno de VIV. Além de espontiineas
essas vibragdes sio auto-limitadas: a velocidade transversal induzida no fluido pelo
movimento da estrutura é da ordem de @, 4, onde A é a amplitude de oscilagio, e
ndo pode ser muito maior que a velocidade U do escoamento, pois, caso contrario, 0
movimento da estrutura destruiria a carreira de vortices que 0 origina; das relagdes
w,~o, ¢ oA ~U conclui-se que A~D, ou seja: 2 amplitude da oscilagio é da

ordem do didmetro da estrutura.
A rigidez transversal de um «riser” é essencialmente devido a tragio T(z) que varia,
devido ao peso proprio, com a cota z da segdio; a velocidade da onda transversal no
“riser” é, portanto localmente dada por

T(z)

m_+m,

o(z)=

2
onde m, é a massa por unidade de comprimento do “riser” e m, Siedl A éa

massa adicional; caracteristicamente a tragio T(z) € da ordem do peso proprio

submerso do “riser” e se h for a profundidade do mar tem-se
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m +m,
O n-ésimo modo natural de vibragio pode ser aproximado por uma expressio da
forma
v,(2) = A.sen(k,(z).z)
a’n
e(2)’
e a deformagio flexional &(z), fundamental na avaliagio da integridade estrutural do

k,(z)=

“riser” , & igual 4 curvatura multiplicada pelo raio D/2 da seglo transversal;

observando as relagdes A~ D e o, o, ( e ignorando a variagio de & (z)) obtém-

5¢

(U Y
“"(z’“i(’caj |

Em 4guas profundas (h>500 m) a velocidade ¢ da onda transversal no “riser” é da
ordem de 40 m/s na regiio do “touchdown”, isto &, na regifio mais proxima ao fundo
do mar; supondo uma corrente maritima com intensidade U/ = 2no6s (= 1m/s) tem-se

e ~1/3200, um valor cerca de 6 vezes menor que o valor limite &, da deformagio

no ago, em geral estipulada igual a 0,2%.
O problema associado ac VIV ndo desempenha, portanto papel relevante no que toca
as tensdes limites no “riser”, mas pode ser importante no estudo da fadiga do
material. De fato, o nimero de ciclos N que um ago API suporta sob uma
deformagcio ciclica de amplitude ¢ é dado pela expressao

£ 4,38
N =2x10° [—-J

2e
resultando em uma “vida 6til” em anos que pode ser escrita na forma

9,76
(VU o5 =1.4x107° B[i] ,
c\U

com o difmetro D expresso em metros e a velocidade ¢ em m/s.



Utilizando os valores c~40m/s, U= 1m/s e D=040m, caracteristicos no
problema sob consideragdo, obtém-se (VU)= 22dias, um valor para a “yida Gtil”
muito menor que o usualmente estipulado pelas Sociedades Classificadoras (cerca de
200 anos).

Do exposto, as seguintes conclusdes gerais podem ses derivadas:

A deformagio flexional causada pelo VIV diminui com o aumento da profundidade
do mar (com o aumento da velocidade c),

e A deformagiio, e, portanto o dano acumulado, tende a aumentar a medida que a
tragdio T(z) diminui, ou seja, a medida que a sego transversal de aproxima do fundo
do mar;

e A deformagio aumenta com 0 quadrado da intensidade da corrente maritima e a

“vida atil” diminui com o fator U=,

e Da expressio k,=o,/c, com k ~nr/h e o,/czUlcD, obtém-se

~ 20 as vibragdes induzidas por emissio de vértices tendem a excitar

n~

zcD

modos altos de vibragdo do “riser”, quando provavelmente a influéncia da rigidez
flexional ja deve se tomar relevante;

e Se I~k for o comprimento Suspenso do “riser’” e A for o comprimento de onda
do modo excitado, tipicamente tem-5¢ AlT=1/20;

e O fendmeno de VIV introduz deformagdes dinimicas muito menores que a
deformagéio limite do ago; ele tem importancia pratica somente no estudo da fadiga
do material;

o A fadiga devida 4 emissdo de vortices € preocupante.

Varios fatores, ndo considerados nesta analise inicial, devem atenuar a influéncia do
VIV na “vida Gtil” do material. O principal deles € que 2 velocidade da corrente
maritima diminui, em geral, com a profundidade e, mais ainda, quando o “riger” €
langado em uma configuragio de catenaria a componente desta velocidade na
diregio normal € pequena nas vizinhangas do ponto de “touchdown”. De outro lado,

é evidente que o problema sob consideragio necessita ser estudado com cuidado:



uma avaliagio preliminar, como a acima feita, tenderia a inviabilizar o uso destas

estruturas ocednicas.

2. Objetivo

O presente estudo faz parte de um bem maior que tem sido desenvolvido no NDF. 0
objetivo final é a construgdo de um modelo para o fendmeno de VIV, para que
contribui¢des sejam dadas na compreensio completa do fendmeno, além de permitir que
solugBes vidveis possam ser implementadas para © problema com “risers”.

O objetivo deste estudo em particular € o desenvolvimento de um modelo numérico que
recupere os resultados do estudo da primeira transi¢io na esteira, que sio apresentados
na publicagio Provansal’, e posteriormente extrapolar a faixa de valores de parimetros €

usar outras condigdes de contorno.

3. Descrigio do fendmeno de transigéio

Sers estudada a transigio entre padrdes de emissio de vortices que variam conforme se
aumenta o niimero de Reynolds. Observa-se que, para 45 <Re < 200, estabelece-se um
padriio de emissdo osdenado e periddico, no qual vértices sdo emitidos paralelamente ac

cilindro; é denominado “parallel shedding”.

Figura 2 — Visualizagdo do desprendimento de vértices emitidos paralelamente.



Para 200 < Re <300 estabelece-se um estado pouco ordenado de transigio, no qual
coexistem dois modos, denominados A e A*, associados a duas freqiiéncias que
predominam no fenémeno.

Essa transi¢io apresenta uma histerese. Quando diminuimos o numero de Reynolds a

esteira se reestabiliza em um modo periédico apenas a uma distincia abaixo de 200.

Figura 3 — Visualizacio da esteira no escoamento ao redor de um cilindro visto em
planta: a) Re ~ 200 b) Rew=230

Apds essa faixa transigio estabelece-se novamente um estado periédico ordenado de

denominado modo B.
3.1. Abordagens para Modelagem do desprendimento de vortices

Usando-se as ferramentas de CFD (Dindmica dos Fluidos Computacional) atuais,
nio tem sido possivel recuperar © fendmeno de histerese. Os resultados que se
observa na transigio recupera apenas uma das freqgiiéncias, a referente a0 modo A.

A histerese na transigio pode ser recuperada  utilizando-se modelos
fenomenolégicos, uma abordagem que toma modelos de outros fendmenos € 0S
ajusta externamente ao fendmeno em questdo.

Em muitas outras areas ha fendmenos com caracteristicas semelhantes s do

desprendimento de vortices: oscilagbes auto-sustentadas e auto-limitadas. Os



parimetros dos modelos desses outros fendémenos sdo ajustados por experimentos ou

métodos numéricos.
O presente estudo & baseado nos resultados de um modelo fenomenolégico. A

equacio usada desse modelo é a de Ginzburg-Landau, que serd descrita mais

adiante.

4. Resumo da Publicag::'m2

A equagio de Ginzburg-Landau, que ¢é conhecida por modelar bem o fenémeno de
emissio no regime periddico, é usada obtém para a regido de transigio. Os resultados
numéricos apresentam boa concordincia com resultados experimentais.

O corpo rombudo usado foi um anel e, apenas para comparagio, foram feitos
experimentos com um cilindro.

A escolha do anel foi devida ao fato da auséncia de efeitos de borda. Nos experimentos
com o cilindro condigdes de contomo especiais foram garantidas para inibigdo de vortex

shedding obliquos.
4.1. Caracteristicas mais importantes dos experimentos

Anel

s Meio fluido: ar.

e Experimentos foram feitos em tinel de vento.

e Anel fixado a 15 ¢cm da entrada do tinel de vento.

e Razdes de aspecto usadas : 50 < 7—;2 <100

e As velocidades foram medidas em pontos fora da linba de centro.

Cilindro
A razio de aspecto: L/d=78.



4.2. Resultados experimentais

Anel
3 [ . A u
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Figura 4 — Espectro do campo de velocidades longitudinal da esteira de um anel de
razdo de aspecio %12 =59 (média tomada em tempo longo). O: modo periddico; A:

modo 4" : J: modoB.

e Para Re<160 o espectro da velocidade sdo picos finos. A partir de Re=~130
velocidade passam a ser irregulares e cabticas e o spectro sofre um alargamento.

¢ Um segundo pico aparece para Re>180. Sua intensidade é fraca e nunca excede a
do primeiro pico.

e Para Re~300 a largura do spectro diminui formando-se um Unico pico fino & 0

modo periédico se restabelece novamente.
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Figura 5 — nimero de Strouhal, § = T em fungio de Re na faixa de transigio. (a)

Anel, razio de aspecto ? =59 (b) cilindro circular, razio de aspecto §= 78.

e A curva SxRe apresenta uma descontinuidade para Re~190 ¢ uma
descontinuidade em sua inclinagio para Re~260 .
e Omodod corresponde 20 segundo pico que surge no Spectro para Re>180. Ele

se alinha bem com a curva peri6dica.
Cilindro

Apresenta, qualitativamente, quase todos os resultados iguais aos do
anel, com apenas duas diferencgas:
¢ Apresenta uma segunda descontinuidade emRe~ 260.

s Apresenta modo B mais coerente.
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Aparentemente as diferencas de resultados entre o anel e o cilindro sdo devido a
. . ) D
diferentes condigdes de contomo, pois a razio de aspecto do anel, Ed—- , é grande e,

portanto, s comporta quase como o cilindro.
4.3. Resultados Numéricos

Condigdes de contorno para 0 modelo numérico da equagio de Ginzburg-Landau:

oA 0’4
a e

e Cilindro: A = 0 nos exiremos (sugerida).

+ A a=0

e Anel: Periddica.

Comprimento do dominio em z: L=100

Experimentalmente determinou-se a seguinte lei de parametros:

-3 para R, <100
C, =
27 1.4,1+0,011R, para R, >100

R, =-5125+0,213R,

k=02
¢ =¢, +2,7
27 R,

¢, =—————%C
2
° k R,-R,
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De simulages foram feitas para o anel foram obtidos os seguintes resultados de

espectros:

o4 07 LB LA LA
tV('nl.""i.'ilu

Figura 6 — Spectro no tempo da amplitude A(z,t) da equagdo de Ginzburg-Landau

obtido de simulagdes numéricas com ¢,, ¢, ¢, , k indicados ¢ L=100.

Observa-se que a primeira descontinuidade foi recuperada, mas a mudanga na

inclinagiio na passagem do modo A para o modo B é bem menos pronunciada.

—————— ¥

100 200 oo

Figura 7 — Relagdio entre S-Re resultante do modelo de GL. O namero de Strouhal

foi calculado como § =22 = Lt Jar e feck)
R 27 Re

€
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5. Equacio de Ginzburg-Landau partindo-se das equacdes de Navier

Stokes.

Para uma methor compreensio da fisica basica que controla o fendmeno e do significado
de pardmetros a varidveis envolvidas sera apresentada uma dedugdo superficial da
equagiio de Ginzburg-Landau partindo-se das equagbes de Navier Stokes na forma
discreta (para uma dedugdo mais detalhada ver [4D.

Equacdes de Navier Stokes: forma discreta

MU +KU + NUYU -RP =F,,

{R‘.U =0

Tomando-se espago de estados solenoidal, temos

o que resulta

RP=0

E as equagdes, reescritas, ficam

M x+K,x+ N, (x)x=0

Podemos reescrever essa equagio, para um dado valor de Re, na forma de n equagBes de
primeira ordem:

%= J1(x,, %5505 %,)

X, =/, (%), X552X,,)

%, = f{%: %5 x,)

X =F(X)

Como estamos interessados em conhecer a estabilidade do sistema no entormo do
equilibrio, podemos dar uma pequena perturbagio quando o sistema esta na posigao de
equilibno:

X=X,+X
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%, = £,(6,) = £,(%,,, +65,) ,1=12,.n

Linearizando F em tomo da posigio de equilibrio por série de Taylor

o

. &, %,

xl zfi(xl’xZ:--"xn) :-fl(xleqﬂxZeqr"!xneq)‘[-a_x:-xeq(&rl)-{-al—xeq(axZ)_l-"'+an-xeq(axn)+0(&vz)
) 3/
X, =f2(x1,xz,...,xn)=_fz(x,é,q,xzeq,...,x,,eq)+BJ;—2 (cixl)+éxafi (6x2)+...+gi (6x,,)+0(c§i¥2)

1 lxeq 2 Ixeq 8 | xeq

: @.n afu @-n 2
X, =fm(x,,xz,...,xn)=f,,(xhq,Jrzé,,q,...,x,,eq)+ax1 xeq(&l)‘Fé;z‘m(&fz)‘h-»"‘a;m(&n)+0(&( )
No ponto de equilibrio

X, =0
ou

-f:l(Xaq)=fZ(Xeq)="'=.f;:(Xaq)=0

O que significa

X=0+8

X =6X

Logo, podemos reescrever o sistema de equagdes acima na forma matricial

&, | £ = Pl "= | &, |ou

RREARE:2 o,
=2 I S ™ I T
xeg xeg x8q

]

&% =(A)5x

A: matriz Jacobiana.

Obtivemos assim um sistema de n equagbes lineares de primeira ordem, cuja solucgdo

geral é
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n
i 13 t 1
8X =e™E, +e™E, +. . +e"E, = E e"E,
r=1

e A e E sdoos autovalores e auto-vetores, respectivamente, da matriz Jacobiana, isto ¢
det(Al - A4)=0

nos d4 o comjunto {(}{,;E,);r = 1,2,...,n}.

Tanto os autovalores auto-vetores quanto 0s auto-vetores sfio, em geral, complexos

A =0,+oi e E=E ,+ LE, e

Apenas para fixaciio de idéias, admitiremos que todos os autovalores sejam distintos, 0
que implica todos os auto-vetores serem linearmente independentes.

Sabe-se, da observagio do escoamento através de um cilindro, que o comportamento da

esteira muda conforme mudamos o namero de Reynolds:

o Re abaixo de 45;

O campo de velocidades na esteira ¢ estacionario:

X=X,

e estavel o que significa todos os autovalores terem parte real negativa:
A =0,+t0i

o, <0,0,<0;.;0,<0

¢ Reacima de 45:
O campo de velocidades estacionario se toma instavel, isto é, a menor perturbagio
tira o campo da configuragéo estaciondria e observa-se uma nova configuragdo: a
formagio de vortices alternados, o que implica um campo de velocidades oscilatéro.
A amplitude de oscilagdo € aproximadamente constante, limitada e é auto-sustentada,

isto é, ndo tém agentes externos que imp&em a oscilagio do campo.

Tal comportamento & conhecido de outros fendmenos fisicos e ¢ bem modelado se

fizermos duas hipoteses:
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Colocando-se em ordem crescente as partes reais dos autovalores o, >0, >0, >...>0,

para Re > 45, mas ainda bem proximo de 45,

s Apenas dois autovalores, A =0, +@ g o sen conjugado 2 =1~ @ passam a ter
parte real, o, positiva ¢ todos os outros autovalores continuem com parte real

negativa.

* 0, <<1 ,pois Re esti bem proximo de Rec.

a,

ﬂ\

"""""" .‘J'""'.' S

" Rec=45 Re

Figura 8 — Parte real do auto-valor positivo em fungio de Reynolds.

Com essas hipéteses, concluimos que, para 7 — o
e”E, —>0

e™E, >0

e™E, —0
Portanto
X =e™E, +e”E,

Recaimos entio em um problema bidimensional, que € representado no plano instavel

formado por E, ¢ E,.
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EZ2
E1

/r

Figura 9 — Plano instavel formado pelos dois auto-vetores correspondentes aos

autovalores positivos.

Reescrevendo &X'

8X = ¢VE, + e7'E, = € E, + e E, = €™ (B + 1By pnag) e N(Ey s+ 1E g

Resulta, de modo geral

g, =d, =Ce"™ cosant

Como o, >0, temos que ¢, é oscilatorio e com amplitude crescente

(7

a) b)

o

N
IUV

Figura 10 — Evolugiio de ¢, nas vizinhangas do ponto de equilibrio. (a)

Representagdo no espago de estados; (b) Representacdo temporal.

E sua equagdo diferencial pode ser escrita como
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4, ~20\4, +@iq, =0 (5.1)

Porém esses resultados foram obtidos a partir da solugiio das equagdes que foram
linearizadas em tomo do equilibrio, e, portanto s6 validas para pontos proximos ao ponto
de equilibrio.

A medida que nos afastamos do ponto de equilibrio os termos nfio lineares passam a
alterar a solugiio. Como a solugdo em regime é um campo de velocidades oscilatorio

com amplitude limitada recaimos numa solugéo do tipo ciclo-limite:

e T e T T T T T

Figura 11 — Ciclo Limite; Evolugdo de g, distante da vizinhanga do ponto de

equilibrio.

Determinaciio do termo nfo linear N(q,.q,).

Somando N(gq,,q,) & equagio (5.1):

g, -20,g, +wlq, + N(g,.q,)=0 (5.2)

e multiplicando-se por ¢,, ficamos com
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érq.r - 20’qu2" + a)lzqur + q.r 'N(q.r':qr) =0 (53)
Integrando a equagio (5.3) num periodo 77 do ciclo limite

Te .. . Te ) T, ) Te .
[F4,q.0+ [ 0fa,q.di+ [ 4, N0, | 20,47dr =0
%4 g [ 02 S dt+ [ 4, NG, g, )t - [ 20,471 =0
JO T t+j0 a, 2 t+_[0 q, (‘:Ir!qr) t_-“O od, t=

.2 2
e g, = 24, Te | . Te .2 g
J’D _Z—dmjo »’ —2—dt+L 4, N(,,9,)dt - | *20,47dt =0

=O,qp:-.ri6dica

ficamos com
I 4,N,.q,)d =] " 20,2t

o r r2dr o 11r
Como

TC =2
L 26,¢%dt >0
teremos que
I;C q.rN(q.r:qr)dt > O (54)
De modo geral, N é um polinémio de g, e ¢,, mas se tomarmos um polindmio apenas
de ¢, :
N(q.raq() = qu- + N2q-‘2 +N3q.3 ...
E desprezarmos o termo linear tomando apenas os termos impares
N(q.r:Qr) = N3q3 A qu‘S +N7q7 +...
A integral (5.4) ficara sempre positiva.
Como uma primeira aproximagdo de N, tomaremos apenas o termo cubico:
N(4,.4,) = M’
Substituindo em (5.2), resulta
Qr - ZO'IQ-'r +QIZQr + ;‘qr:)' =0
Ou
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H

[ ——
¥

Que ¢ a equacio de Van der Pol.

Se ¥ fosse constante, a solugio g, seria

g =e " (C,coswt +C,senwt)
. [ - 2 201 ] ; :z
mas como y =| §,” —~— |, é vanavel
H

Notamos que

o 20, » . . .
e Se g, é maior que —L , » fica positivo e a solugdo fica amortecida, fazendo ¢,

diminuir,

L 20, . N .

e Se g, é menorque — , y fica negativo e a solugfo fica superamortecida, fazendo

g, aumentar.

Logo a amplitude fica limitada e auto-sustentada.

5.1. Equaciio de Landau

A equacio de Landau pode ser obtida a equagio de Van der Pol fazendo-se algumas
manipulagdes algébricas.

Escreve-se ¢, como g, = _ZI-(A(t)e o1 A(f)* e’*"") onde A é uma varniavel complexa e

fungiio do tempo. Calcula-se ¢,, §,, ¢ e, apos algumas aproximagdes, substitui-se

esses termos na equagio de Van der Pol.

5.1.1. Aproximacdes

Serdio desprezados termos da ordem de (o-,2 ) ou superior ja que o, <<1.
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Substituindo-se

N(4,.9,) = 4,

em

[ 4, NG,.q)dt = 20,7t

obtém-se

J' ,uq”‘dt-j 20,G>dt (5.1.1.1)

Em primeira aproximagdo, o ciclo limite é uma circunferéncia, logo
q, = Ay cosat (5.1.1.2)
substituindo-se (5.1.1.2) em (5.1.1.1):

;Haa)"fc sen*{wt )dt = 20'@1? sen *{(wt it
A, 0" =20,0"

20, 1
&= [\/‘;"](E]

logo, obtemos que

4=0{Jz,)

E, portanto, termos cibicos de A serdo desprezados.

- - .3
5.1.2. Calculo dos termos 7-, 9- ¢ 9 .

. . *
* 9 =—1-(iwe’“"A— ot K) 4 — ( ior G4 g dA J
2 dt dt

X . F . 2 ' 2 4%
qr Z—GJZ(l(Em"A'i'E_WtA*)J'l'Z l(iweiw ﬁ_iwe—rmf ﬁ) +l em:t %_{_e—xm d_é__
2 2 dt at 2 dt dt

i AA i A
e 2 +[. ik _ -me~:cot )
q, 0 q+|ine m i @
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; 3_1- 7 B R g _1_ imé’i —imﬁd£_3
@,) —s(me A-ime ™A )3+8[e dt+e a)

—»0

* 3
(g, = %(iane"“"A —ia;e"""‘A"‘)3 +El;—[e"“" %j—+e' il g‘;—t-]

N V]
S

w0

@)= %(— i0°e" A4* + 3% A 4—3ia’e ™ |4’ A% +in e 4"’

Substituindo-os na equagdo (5.5):

ficamos com

. : dA*
-o’q, + ime‘“"ﬁ—iwe“"“"éé ~20 l(ic:ve‘”“"A—ime"‘*"A"‘) 20t e"‘"-@—+e““"g‘4— +
dt dt 2 2 dat )

+ §8ﬁm3e"”" |A|2A + %{—m%“’% —3io’e ™ |A|2 A*tiole ™ (A*)3)+ w’q, =0
Simplificando e multiplicando todos os termos por e, ficamos com

(ia) A _ e —‘EJ - a(ia}A —ime ™™ 4 *)+ Z,£1'|a)3|A|2 A+ ﬂ(— in’e®™ A® —3in’e™ [Al2 A* tia
at dat 8 8
integrando em um periodo e reescrevendo obtemos

io a —oiwd + 3—‘“—1‘&)3|A|2A =0
ar 8

G a2 |4 a0
dt g
%—aA+ﬁ|A|2A=0 (5.1.1.3)

que ¢ a equagio de Landau.

Ela é valida nas vizinhangas da bifurcagio, onde 0 <o <<1 e as aproximacdes

acima usadas sio validas.

A equagiio de Ginzburg-Landau ¢ obtida somando-se o termo difusivo acoplado,
2

L a equacdo de Landau:

2 >
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_ ,—
%—aﬁ+la‘4—p|2|22=o (5.1.1.4)

ot Z

A principio seu dominio de validade ficaria também resfrito ao 4 vizinhanga de
Reynolds critico Rec, porém verifica-se que esta equagdio continua a modelar
bem o fendmeno de vortex shedding mesmo para Re muito maiores que 45.

Isso nos leva a hipotese de que o permanece entre (<o <<l mesmo para

Re>>45, fora das vizinhangas da bifurcagio.

—
-

/ﬁec:ﬁlS Re

Figura 12 — Comporfamento de o em funcio de Re.

Na publicagio a equagio de Ginzburg-Landau ¢é apresentada numa forma

adimensionalizada. Essa forma é obtida realizando-se uma re-escala, ja usual na

literatura. Para isso, faz-se

Amplitude: 4= 4

2
o

r

o =0, +io;

Tempo: 7 =t0, {{=H +i}l;

y=v,+iy,

Espago: z =z ’1’-
Yr

Os termos passam a



Q’i—)o;\/ggé GZ—)O‘JEA
ot u ot K,
24 of o, [o,04) o, |0, 04
= T o sl ke oyt
0z a\\y. \u o v, \u Oz
2= o, lo
,u|A| A—->pu— |—
H, \fﬂ,

A equagcio de Ginzburg Landan fica entdo

2
ot v, Oz M,

A 4

2

A

2
A4_0o 4,104 B4y
o o, 0 p

. ; g .
_a_A_:(o-r-'_ldi)A_'_(yr-'_lyi)aJj_(lur-l-lpi)lAle
ot o ¥y, Oz i,

2
%:(l+ico)A+(1+ic1)Z—;1-—(l+icz)|A|2A

onde:

5.3, Solucdio analitica para a equaciio de Landau.

Tomando-se a aproximaggo de primeira ordem da equagio de Landau

Se Re(g) >0 , a solugiio é instavel.

23
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Figura 13 — Evolugdo temporal de A obtida da equagdo de Landau linearizada.

14 16

O termo nio-linear, y‘ﬁr A desempenha o papel de limitador da solugdo.

A - |5P 5
-a?zo’A—y‘ArA

Que com os coeficientes adimensionais fica

%—’j: (1+ic,) A—(1+ic,)|4] 4

Tomando-se uma solugio do tipo A(f) = 4,¢” , com

O o e e || =] Al | =14l
E substituindo em {5.3.1) obtemos
io =(1+ic, ) —(1 +ic2)|A0|2
{iw = ic, —ic, |4y
0=1-|4

=1
De onde obtemos: {|A°|
®=Cy—0C,

Para Re=100:

(5.3.1)

24
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Tempo

Figura 14 — Evolugdo temporal de A obtida da equagdo de Landau nio-linearizada.

¢, =6,3533781
c,=—-3,0

w =9,3533781
f =1,488636

. Construciio do Modelo Numérico da equagiio de Ginzburg-Landau

6.1. Método Explicito

Por este método as derivadas s30 reescritas como

oA’ _ A Ay

at |y, At
024 AL+ AL 247
|, Az’

Substituindo-as na equacio de GL (5.1.1.4), tem-se

AP-{-I . P 5 AP e o
Ay Ay _ (1+ic)A, +(1+ic) A * ML 28y _ {1+ icz)lAzf; |2 Ay
At bz
Ajfﬁl + A;f—l _ZAR};

A;;H =A; +At(1+iCO)A;:r +N(1+icl) —-At(1+icz)]AA‘;|2 A;;

Azz

Condigdes de contorno:
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Nos nds extremos:

a

dz extremos

A EGL discreta fica na forma

A',TI :f(A-ﬁwAg:A:-isAzsAt:co:cpcz)
O resultado obtido foi:

MODULGEA) ve TEMPD

o 20 L e0o 802 10030

Figura 15 — Resultado da evolugio temporal de A(z,f) obtida de simulagdes com o
método de diferencas finitas explicito para 6 nos diferentes.

Observa-se que para t > 400 a soluglo se desestabiliza e adquire um comportamento
irregular.
No entanto fisicamente sabemos que ela deveria permanecer constante, 0 quée nos
leva a conclusdo que effos numéricos associados ao método explicito so 0s
responsaveis por tal comportamento.
Valores diferentes de parimetros de simulagio foram usados. Os valores para passo
no tempo foram 10~ <dt <10™"; para o passo em z 0.01<dz< 0.5. Para todas as
simulagdes surgiram instabilidades. Diferentes combinagdes de parimetros apenas
alteraram o instante em que as instabilidades comegavam a aparecer.
Diferentes condigdes iniciais também apenas alteraram o instante em que as

instabilidades comegavam a aparecer.

20
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Por esse motivo um novo método de diferengas finitas foi construido. Um método
semi-irplicito, com apenas o termo néo linear, ;1|A|2A, explicito. Serd apresentada

também uma discussiio comparativa sobre a convergéncia dos dois métodos.
6.2. Método Semi-implicito

Seja a equagdo de Ginzburg-Landau

A A
{E—M (7, +lr;) + (4, +ip)|A] 4=0 (6.2.1)
\—v—" e e

¥ !
Definida no intervalo 0<z <L, com / =é— sendo a “razdo de esbeltez” do riser e
sujeita a condi¢des de contomo
2, A(0.0)+ %Z’i(o, =0 622)
a, A(L,1)+ B, %’-‘L(L,z) =0 (6.2.3)

Z
Da expansio de Taylor nas vizinhangas de z,

3
Azt Azt) = Az 2 (e, t)Az+—- 94 (2.pA2 +—1—a—(z 0A7 + LT4 2 oAzt +
Oz 3t & P

Obtemtos:

%(Z, f)= 2_l;[A(z + Az, ) — A(z— Az, )]+ O(Az*)

%z;i(z, £)= EIE[A(Z + Az, 1) 2A(z,) + A(z — Az, )|+ O(AZ”)

Definindo os pontos discretos com coordenadas {z; = j.Az; j =0,1..,[} onde
LAz =1 e designando
{AJ. =A(z, 1)

Temos:
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o4, A4 2
{—a—:-—O'Aj —}’(-527) ‘ +}1|Ajl Aj =0

(%}l . -A—lzf[Aﬁ1 @) -24,0)+ 4, ()]

condigdes de contomno (6.2.2) e (6.2.3) sdo utilizadas para determinar o operador

As
azA] . . ]
: ;]=0€]=I}. Assim:
{( oz ;

(62‘4] = A,(r)—[l—Az-‘;j—"]Ao(t)} (8, =0)

(a—ﬁj L A.-l(r)—[lw%}ﬂ(n} (B #0)

oz Az .
P4) 1

(—a-;l —E[Al(t)—ZAo(tHAz-l(t)] (6.2.4)
a4y _ 1

[—a—;l_] —F[Ao(t)—ZA,Al(tHA;_z(t)] 6.2.5)

6.2.1. Condicdes Iniciais

Com as adequagdes apropriadas nos pontos de contomo, ver (6.2.4) e (6.2.5),
temos que integrar no tempo s sistema discreto de equagdes.

04, 9*A 2
—L-o4, -y(gz-z—l +pld| 4,=0

4 1
[-a_zz_)_; B E[Ajﬂ (t) - ZAJ (t) +4 -1 (t)]

Sujeito a certas condigBes iniciais que serdo definidas posteriormente.
Consideremos a versio linear de (6.2.1) dada por

Z—f—-aA+ plAf 4=0 (6.2.6)
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Sua solugdo geral pode ser escrita na forma de uma “série de Fourier” (ou

“transformada”, quando / —» o0 ), com parcelas da forma

A(z,t)=a, ()" 6.2.7)
donde

da, 3

5 —oa, +k'ya, = (6.2.8)

Para o >k*y a solugio de (6.2.8) ¢ exponencialmente crescente e, como ja dito
anteriormente, somente o termo nio linear de (6.2.1) é capaz de limitar a solugo.
Para ondas curtas (a < kzy) a solucio de (6.2.8) € exponencialmente
decrescente.

Colocando (6.2.7) em (6.2.4) obtemos

%—;i = _Z‘i?(l —coskAz).a, (e

E o sistema discreto (6.2.4) toma entdo a forma

da 2y
T: -oa, + Ez-(l —coskAz).a,(t)=0 (6.2.9)

Quando kAz<<1 o sistema (6.29) reduz-se, com erro de forma de

l:l+0(kAz)2], ao sistema (6.2.8). O problema todo reside, como veremos, no

limite de ondas curtas do sistema discreto, onde kAz ~ O(1).

| ittt il

Figura 16 — Menor comprimento de onda que pode ser representado em uma

. . 2
discretizagdo; k=—.
N Az
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e a instabilidade numérica fende, como veremos, a hipertrofiar justamente essas

componentes mais curtas que, sdo inevitaveis devido a perturbag¢des numéricas.

6.2.2. Discretizacio no tempo

Consideremos a discretizagio no tempo do sistema linear (6.2.9) que é a aqui
reescrito na forma

da, __

= [—Ez‘%(l—cosk[\z)—a}ak(t) (6.2.2.1)

Se Ar for o incremento no tempo definimos
a,” =a,(nAr) (6222)

E consideremos a fungiio a,(¢) no intervalo nAs <t <(n+1)At

nit (n+1)As
| Y
—— &- =
1
(n+6)At 0<8<1

Desenvolvendo em série de Taylor a funglio a,(f) no entomo do ponto
(n+6)At, com 0< 6 <1, e designando por a,""? =a,[(n+6)Af] temos

ak(u+l) - ak(n-{»e) + ak(n+9)(1 —B)At +% ..k(n+a) (1 _ Q)ZAIZ + O(AI)3

_ 1.
g =0, - 40N+~ G OF N + O(AYY

E, portanto

a = (1-8)a," +6.a,"" + O(A1)’ (6.2.2.3)
+0 a""-a” 1 gt 27 A42 2

a"” ’:-k__N_"-_{.E&k("* N8 - (1-6Y’ 1A + O(Ar)” (6.2.2.4)
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Para 9;&% o erro em (6.2.2.3) e (6.2.2.4) para a aproximagio 4,""” ¢ da
ordem de O(At) ; para 6 =% (esquema de Crank-Nicholson ) esse erro € da

ordem de O(At)z. Como veremos no proximo item, o esquema de Crank-

Nicholson é, no entanto, implicito, isto &, ele exige a solugio de um sistema
linear a cada passo A no tempo. Nesse sentido, parece set interessante a escolha
g =0 que leva a um sistema explicito, onde a inversdo de matrizes é evitada.
Como veremos a seguir, 0 esquema explicito (£=0) leva a um problema de
instabilidade numérica que s6 pode ser contornade com um Af muito pequeno.
Assim, utilizando a aproximagio

(nl) __ oy (1)

%, 0[(20-1)At, AP

. e _
ak =

Em (6.2.2.1) e aplicando essa equagiio no tempo (n+ &)Ar , temos

ﬁ’. . i ) _ 11— 2’_ _ . m
{1+6’At(/_\z2 (1—-coskAz) a]}ak {1 { O)A{Azz (1—coskAz) a]}ak

E definindo

1—(1-9)At[i12(1-coskm)—a]

G(AL,0)= >
1+0AI[A—:-5(1 —coskAz) —0':|

Temos
a, " =[G(A1,0)]a,"
E portanto

ak(u) — [G( At, 9)]" ' ak(O)
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Obvio, se |G(A1,6)| <1 a solugdo tende a zero no infinito (a,"” — 0 quando
n —> o) e, de outro lado, se|G(A7,8)|>1, a solugdio tende ao infinito (¢ -

quando n —» ®).
A discretizacdo para um dado Az é apropriada para representar bem os modos-k

com kAz <<1, Pois nesta situagio temos

1-(1-8)At(k’y —o) _
G(ALO), 0 =7 o) ° 1-At(K?y — o)+ O(ArY’

E portanto
(G(Ar,0),,, | 21— 280Ky, —0) + O(AL)’

; . ~ " o
Concluimos assim que a solugdo numérica tende a zero quando k*>— e ao
Vr

infinito quando &’ <£~, preservando a condigdo kAz <<1. Este resultado é
¥r

consistente com o que se obtém a partir da analise da solugio da equagdo linear

(6.2.2.1).

De outro lado, se kAz~O(1) - por exemplo, se kAz=x, a onda “mais curta”

permitida na discretizagdo - temos

G, (Ar,9=0)=(1+am)—4yfz%

Az
L teloar-2p 2
Gx (At:g=_)= 1 ‘AAzt
Az 2 1 CoAr+2y5
2 Az

t ..
Observando que y =y, +iy;, com y, >0, e que Zy%>%oﬁt, é trivial

verificarmos que
o [l e
G, (At,9=—)|= <1
e 2

Ar 1 ) At
li]."‘(zya &E—QGNJ}+12?I :&z?
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Ou seja, o esquema implicito de Crank-Nicholson (9 =%j naturalmente

amortece as componentes de alta — fregiiéncia kAz ~ (1) e que nio devem, de
fato, desempenhar papel relevante se 0 Az for bem escolhido.

De outro lado, para o sistema explicito (&=0)temos que a “condigio de

estabilidade” G _ (Ar,0=0)<1 serd satisfeita de e somente se
Az

At 1 ¥r li i 12 ad 2 4]
<l 1- AZ* +O(AY) (6.2.2.5)
A2 2y Y+ 4%,

At 1y

e = > estio as ondas
Az 27+

Portanto, mesmo que (At — 0;Az > 0), se

mais curtas serio amplificadas neste esquema numérico e a solugdo numérica

jamais podera convergir para a solugio exata.

A parcela ndo-linear pode, do ponto de vista qualitativo, ser incorporada no fator
o através da transformagio o < o -mpla,|’ e como p, >0 de (6.22.5)

concluimos que, em tese ao menos, a parcela nio linear tende a desestabilizar
essa solu¢io numérica (embora a parcela ndo linear seja a “estabilizadora” da

solugio em tempo continuo).

6.2.3. Crank-Nicholson semi-implicito

Aplicando o esquema Crank-Nicholson a equacio (3b) obtemos

Mt 37 A™D -

(n+1) (n+]) (D)

A, i lVO'AJ. N +y[ 5 -,u‘Aj *
Az

At 9?4 -
(n) Q)] Q]
LA+ 5 [GAj +;{ ) —plAj

J

e |
AJ. . }—
(6.2.3.1)

2
()
A,

2 s r [4 =
utilizaremos ai a “predi¢io

E para evitar a nio linearidade da parcela Iﬁj(”"”

explicita”
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~ At A" ~
(mely _ g (1} 0] ]
A =47+ > [O’Aj +y[ 3 —»,u|Aj

J

Z 4
4, ] (6.23.2)

Supondo que (o; ;1) possam variar com z, tomando valores {(c;7;;4;);1 =

0,1,2,...L} e introduzindo os coeficientes

1r~
() _ (n+1) ()
Qj o —E[Aj +Aj ]

v, M
M;="— (6.2.33)
At 2y, N 2
(n+1} _ J (n+D)
Nj —1——2—(61-—?—#].‘14.]- l J
Temos que resolver o sistema linear
(M, 40D+ N 400 M AT =0 (6.23.4)

6.2.4. Condigdes de contomo

a) {cxo A(0,0)+ B, %—:—(0, H=0:

Com g,#0 e a,=0.

At 2y, ~ |2
NO:I_?(GO__Aj—i%lAO( +1) ]
Ar
M,=7, Az_z

. No AO(:H]) n M() Al(n+1) = Qo(n+])

. _MIAO(B-H) +N|J41(”+D _MIAZ(JH-I) = Q](u+l)

{a,.A(I, N+ 5 %{;(l,t) =0:
z



Com 8 #0 e a,=0.

Ar 2y
w152
At

M, =y el

% ()
Hy |AL i

)
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Resultados obtidos de simulagdes com método semi-implicito

Pevsr Spacirum oo A
00
0
a0
x0
00
% o s
fragndnan jHe)

{l‘}

{c)

134

10

3t

Prower gt de A

{b}

M

frequénca (HZ}

Pooarae Speiriarn o &

(d)

=t
}
-}

Figura 17 — Spectro no tempo da amplitude A(z,t) da equagiio de Ginzburg Landau

obtido de simulages numéricas com o método semi-implicito. (a) Re = 164; (b)Re

=191; (¢) Re = 218; (d) Re = 309

Notamos que, como nos resultados apresentados pela publicagio:
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e Para Re =164 0 spectro apresenta apenas um pico fino.

e ParaRe =191 e Re = 218 o spectro sofre um alargamento.

e ParaRe =191 e Re = 218 o surge um segundo pico com menor intensidade.

e Para Re= 309 o spectro volta a apresentar apenas um pico fino.

Para construgio da curva SxRe foram tomados os valores das freqiiéncias associadas aos
dois picos.

Houve uma grande dificuldade em tomar o segundo pico, ja que ndo € muito
pronunciado e, para muitos valores de Re, se confunde com ruidos do spectro. Esses
ruidos séio devido ao fato do sinal usado para construi-fo nido der infinito.

Apesar disso os resultados obtidos apresentam boa concorddncia com os apresentados
no publicagio se considerados 0s erros associados as medidas dos graficos.

Os valores medidos na publicagio € nas simulagdes feitas, para a regifo de transigio

onde houve maior dificuldade na obtencio dos valores 2 partir das simulages, sdo

apresentados abaixo:

Resultados de simulagdes: Valores medidos dos graficos da publicacio:
Re Strouhal Re Strouhal

170 0.1720 |0.1844 170 0,178 0,188
180 0.17385 [0.1848 180 0,176 0,188
190 0.17805 |0.1869 190 0,18

200 0.1803 |0.1880 200 0,182 0,191
210 0.1825 210 0,184 0,193
220 0.1861 [0.190 220 0,186 0,195
230 0.1856 |0.1942 230 0,187 0,196
240 0.18675 |0.1955 240 0,189 0,1975
250 0.1912 [0.1970 250 0,191 0,1985
260 0.19185 {0.1985 260 0,194 0,199
270 0.1942 |0.1968 270 0,196 0,201
280 0.1943 |0.1992 280 0,1975 |0,202
290 01955 |0.2032 290 0,198 0,202
300 0.1865 300 0,199 0,201
310 0.1975 310 0,2
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Figura 18 — Relagio entre S-Re resultante dos espectros obtidos de simulagdes com 0
método semi-implicito. O nimero de Strouhal foi calculado como

R k Re—-Rec
S="e=|— ==
R [mjfﬂ[ Re ]

Foram também obtidos graficos de A(z,t) em fungdo do tempo e de z:
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Figura 19 — A(z,t) em fungdo do tempo e da posigdo longitudinal z obtido de
simulages com o método semi-implicito. (a) e (c) Re=100; (b) e (d) Re = 230.
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Observa-se que para Re = 164 o modulo de A, |4}, permanece constante |4}= 1,033,

proximo de |A| =1 como calculado para a equagdo de Landau.

Para Re = 218, na regido de caos, a amplitude adquire um comportamento irreguiar,

como esperado.

Plotando-se graficos das partes real e imaginaria de A notamos que 5&o sendides em

oposigio de fase.

N
T

-
T

.
-

parte roal ¢ (maginaria do A - nosLs4
= =2
C xatl

i i I 4] |

S0 700 B S0 1000

i 1 1 1 Il
30 100 200 300 400 500
tempol(s)

Figura 20 — partes real ¢ imaginria de A(z,t) em fungio do tempo. N6
correspondente a z = ‘-5:

Projegdes no plano de curvas de fase constante, curvas de nivel da fase de A, concordam
com as visualizacBes apresentadas nas figuras (2) e (3). Para Re = 100, que esta dentro
da faixa de emissdes paralelas obtemos curvas de nivel paralelas. Para Re = 218 curvas
que representam o comportamento jrregular da transigio. As curvas de nivel para Re>

300 voltam a ser paralelas, analogas as para Re =1 00.
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Figura 21 — Projegdes no plaro de curvas de fase constante. () Re =100; (b) Re =
218.

Seja o grafico da parte real de A em fungéo do tempo para Re = 218, euma

ampliagdo de um trecho dele.
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Figura 22 — Evolugio temporal da parte real de A no n6 correspondente a z = % ;
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Grande tempo de simulagiio . (a) Sinal total simulado; {b) Ampliagiio de um trecho.
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Figura 23 — Trechos do sinal total tomados para calculo do espectro “Jocal”.

Calculando-se o espectro do trecho de maior amplitude, do de menor amplitude e

comparando com o espectro do sinal todo podemos tirar algumas conclusdes.
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Figura 24 — Espectro de A(z.t). (a) Espectro do sinal completo; (b) Espectro do
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trecho correspondente 4 figura 23(a); (c) Espectro do trecho correspondente 3 figura

23(b);
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Trechos de menor amplitude tém menor freqiiéncia e os de maior amplitude tém mator
freqiiéncia. As variagdes de freqiéncia sdo confinuas e oscilantes entre

aproximadamente
f=1Hzef=1.5Hz

7. Condigdes de contorno periodicas
Retomando o método de Crank-Nicholson semi-implicito aplicado a equagio de
Ginzburg-Landau

{—M,-- Aj(n+l) . ann) . Aj(m) _ M,-- Af:+1) _ QJ(‘_;.H)

(6.2.3.4)
onde
1r-~
(n+1} _ (n+1) (n
Q; _-?:[Aj +4" ]
v Af
MJ:?j_'z—
At 2y ~ D2
() _ (n+])
N 4‘7("—*“?} -4 }
(6.2.3.3)

Com condigdes de contomo periédicas os comportamento das propriedades no né de
coordenada z sdo iguais as propriedades do n6 de coordenada z-1, assim
A(z+1,0) = A(z,1)

Neste caso a solugiio necessita ser aplicada comente nos nds {=012..,/-1} ,ja que
a equagio no nod (!} 4 uma repetigio da equagio no n6 j = 0. Assim temos

A4, =A4(); A,0)=4.0)

[?;zf ] - 40-24/0+4.,0]

oA 1
[ P l_l = Xz'?[Ao(t) —24,(O)+ 4, (t)]

Assim o sistema correspondente a (6.2.3.4) sera (=)
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-

N, -M - e =M 4, 0,
-M N -M - 0 A o)

-M N, M ||4,| |-
L—M -M NL—l_ LAL—IJ—LQL_I

Com N.M, e o dados por (6.2.3.3).

7 1.1. Resultados de simulacdes com condigdes de contorno periodicas

Resultados de simulagdes: Valores medidos dos graficos da publicagdo:
Re Strouhal Re Strouhal

170 0.178 0.187 170 0,178 0,188
180 0.174 0.185 180 0,176 0,186
190 0179 190 0,18

200 0.184 0.189 200 0,182 0,191
210 01825 |0,1927 210 0,184 0,193
220 0.1881 |0.193 220 0,186 0,195
230 0.185 0.194 230 0,187 0,196
240 0.188 0.198 240 0,189 0,1975
250 0.181 0.1981 250 0,19 0,1985
260 0.195 0.198 260 0,194 0,199
270 0.196 0.200 270 0,196 0,201
280 0.189 0.2015 280 01975 {0,202
290 0.190 |0.203 260 0,198 |0,202
300 0.1965 0,202 300 0,199 0,201

Observamos que com essa condi¢do de contorno conseguimos os seguintes resultados:

1) Maior precisio nos resultados de freqiiéncias obtidos de espectros de freqiiéncia dos
sinais.

2) Coincidéncia na posigdo da descontinuidade.

As figuras abaixo mostram alguns exemplos de espectros obtidos



15

10

23

20

15+

10

Freguencias angulares contidas em reak(A),em z=L/4 - Re =130

— Fd=1.2302 [Ha)
~> S=0179

o

05
Trequency (Hz)

Figura 25 - Espectro no tempo da amplitude A(z,t) - Re =190
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Figura 26 - Espectro no tempo da amplitude A(z.t) - Re = 240.
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A figura abaixo mostra 0 mesmo espectro que o anterior, porém com uma curva que

interpola a do espectro.

Frequencias angulares contidas em real(A),em 2=1/4 - Re =240
30 T T T i — ]
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10

5 a ; a
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Figura 27 - Espectro no tempo da amplitude A(zt) - Re =240 — Curva com interpolag#o.
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As figuras abaixo mostram o compostamento de |4]em fungdo do tempo e em fungiio da

posigdo longitudinal z. Observa-se que 08 resultados sdo semelhanies os obtidos com

. 0A
condig¢des de contorno — =0.
Z z=0,L
15 L - a
(a) )
1
-3
a
[} w0 x 0 L 5 LY L " 10 uﬂ 0 —~ » 50 " Y o
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18 4% T T
(c) (d)
1k 1 ! ) )
L] sl .Ill

i
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Figura 28 — A(z,t) em fungdo do tempo e da posi¢o longitudinal z obtido de
simulagdes com o condigdes de contomo periddicas. (@) e (¢)Re=100; (b) e (d) Re
= 200.
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8. Conclusodes

Os resultados obtidos pelas simulages feitas recuperaram todos os resultados da
publicacéo.

Usando-se derivadas nulas de A nas extremidades do cilindro como condi¢des de
contorno observou-se boa concorddncia do ponto de vista qualitativo com as
caracteristicas da regido de transigio.

Com condigdes de contorno periddicas observou-se boa concordancia do ponto de vista
qualitativo e quantitativo. Os valores obtidos de frequiéncia em fungiio do nimero de
Reynolds e a posigiio da descontinuidade apresentaram uma precisio muito boa.

A partir disso concluimos que o modelo numérico apresenta robustez e é confiivel para
descrigio do comportamento na esteira na regifo de transigio e possivelmente fora dela,
para maiores valores de Reynolds.

Um fator limitante dessa abordagem fenomenolégica € que a compreensio de detalhes

da fisica basica que controla o fendmeno fica um pouco deixada de lado.



47

9. Referéncias bibliograficas
[1] MONTEIRO, L., Sistemas Dinémicos, Editora da Fisica, 2000.

[2] T. LEWEKE and M. PORVANSAL, Model of the Transition in Bluff Body
Walkes, Physical Review Letters, 1994.

[3] ARANHA, JAP. e PARRA, P., Vibracdes Induzidas por Emissao de Vortices:
Modelo Fenomenologico ¢ Experimentos.

[4] ARANHA, J.A P, Weak Three Dimensionality of a Flow around a Slender
Cylinder: the Ginzburg-Landau Equation.

[5] MENEGHIN], JR., Projetos de Pesquisa no Tépico Geragio de Vortices no
Escoamento ao Redor de Cilindros.



